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Abstract
The Blonder–Tinkham–Klapwijk approach is exploited to study the conductance spectrum in
ferromagnet(F)/d-wave superconductor(S) junctions with a transverse supercurrent in S. In the
absence of exchange energy with (110) contact (α = π/4), when the supercurrent q �= 0.0, we
find that the conductance coherence peaks split into subpeaks at Z = 0.5 and 1.0. The energy
difference between the two subpeaks corresponding to a single coherence peak is found to
increase as the supercurrent increases. For the F/S junctions with (110) contact at Z = 0.5 and
1.0, when the supercurrent q �= 0.0 the subpeaks split again: in this the exchange energy plays a
dominant role, similar to the Zeeman effect. At certain values of h0/EF, we found that the two
Zeeman-like peaks around zero energy could merge into a single one.

1. Introduction

Conductance characteristics in normal metal (or ferromag-
net)/superconductor (N (or F)/S) tunnel junctions have recently
attracted much attention in experimental and theoretical inves-
tigations [1–18]. This is partly because tunneling spectroscopy
can provide a lot of information towards completely under-
standing the superconducting mechanism. The Andreev re-
flection (AR) process [19] plays an important role in tunnel-
ing spectroscopy. In this process, an electron in the normal
metal impinging on the N/S interface is Andreev reflected and
converted into a hole moving in the opposite direction, and a
Cooper pair is carried away in the superconductor. Andreev re-
flection near the Fermi level conserves energy and momentum
but does not conserve total spin, that is, the incoming electron
and the Andreev reflected hole occupy opposite spin bands.
In ferromagnet/superconductor (F/S) junctions, AR still occurs
and however is strongly suppressed by the spin polarization
of the electrons in ferromagnet [20, 21]. It is recognized that
in such F/S junctions, conducting electrons with up and down
spins experience different potentials in the ferromagnet and
therefore the properties of the junction have a strong depen-
dence on the exchange energy in the ferromagnet. An electron

in the F is Andreev reflected from the F/S interface as a hole
along an approximately time-reversed path, where the time-
reverse symmetry has been broken by the presence of the F.

It is interesting to study tunneling spectroscopy when a
transverse supercurrent IS passes through a superconductor.
It was found experimentally that the pair correlations are
weakened by the supercurrent, leading to a modification of the
density of states (DOS) corresponding to the tunneling spectra
and leading to a reduction of the gap [22]. With increasing
IS the coherence peaks were suppressed and broadened: here
the role of the supercurrent is similar to an external magnetic
field. The conductance characteristics of a clean N/S junction
with an IS in S parallel to the interface have been studied
theoretically [23]. Near critical IS, and for Z � 1, a
three-humped structure appears, signaling the onset of current-
induced removal of the gap on the Fermi surface where
gap originally exists [23]. Similar characteristics of the
conductance described in the above should exist in the F/d-
wave S junctions. In addition, due to the existence of the
exchange energy of F and the anisotropy of d-wave S, we
expect some distinct phenomena to emerge.

Because the cuprate superconductors with high critical
temperature have a dx2−y2 -wave symmetry of pair poten-
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tial [24], the study of F/d-wave S junctions has become an
important topic. The pair potential for dx2−y2 -wave symmetry
has a cos 2θ dependence, resulting in a number of interesting
phenomena. For example, for the {110}-orientation, the ampli-
tude of the pair potential disappears for θ = π/4. In this case,
the d-wave symmetry could lead to a sizable areal density of
midgap states [25], which is the origin of the zero-bias conduc-
tance peak observed in most high-Tc superconductor junctions.
This feature can be used to distinguish between d-wave and
anisotropic s-wave superconductors [25]. As stated above, tun-
neling spectroscopy depends on the orientation of the S crystal
with respect to the interface normal. When the c axis is paral-
lel to the interface normal, the F/d-wave S junction is a three-
dimension (3D) system, in contrast when the c axis is along a
direction within the interface, it may effectively be regarded as
a 2D system. In the latter case, the angle between the a axis and
the interface normal α also plays an important role in tunnel-
ing spectroscopy. Such an orientation dependence of tunneling
spectroscopy is another motivation of this work.

When a uniform supercurrent IS passes through a
conventional three-dimensional S, the phase of �(k) has
a spatial variation as e2iqs·r, where r is the center-of-mass
position of a Cooper pair, qs = (m∗vs/2h̄), with vs the
supercurrent velocity, and m∗ the mass of the Cooper pair. This
spatially varying phase leads to an anisotropic quasiparticle
excitation spectrum in a clean S [23]. In a two-dimensional
d-wave S, the �q versus q relation also depends on the
directions of the supercurrent (�q denotes the maximum gap
in the presence of IS). Superconductivity disappears as IS

reach the critical current. At zero temperature (T = 0),
when q is less than 0.3�0 (q ≡ qs/kF, �0 ≡ �0/EF,
here �0 is the maximum superconducting gap when T = 0,
IS = 0; kF and EF are the Fermi momentum and energy,
respectively), the changes of the order parameter �q of a two-
dimensional d-wave S with q in both the antinodal (α =
0) and nodal (α = π/4) directions are almost the same.
However, a great difference exists for large q . When IS is
along the antinodal directions, �q has a sharp drop between
q = 0.384�0 and 0.385�0. After that it drops continuously
to zero at q = 0.53�0. When α = π/4, �q gradually
decreases to 0.689�0 at q = 0.469�0, and has no solution
beyond. The thermodynamic critical supercurrent density js =
0.238envF�

0 (0.225 envF�
0) is reached at q = qc ≈ 0.35�0

(0.39�0) for a current in the antinodal (nodal) direction [23].
Our paper is organized as follows. In section 2 we adopt

the BdG equation to study F/d-wave S junctions carrying
a transverse supercurrent IS for (100) and (110) contact.
The BTK theory is readily extended to the spin-dependent
transport through an F/d-wave S junction, and the differential
conductance is derived. Our main results on conductance
spectrum structure are presented in section 3. It is found that
the conductance spectrum shows many interesting properties
that are distinct from that in N(or F)/s-wave S junctions.
Section 4, is our conclusion.

2. Model and theory

We consider an F/S junction structure of semi-infinite F and
d-wave S carrying a supercurrent separated by a very thin

Figure 1. The Schematic sketch of our model, with a uniform
supercurrent IS in a d-wave superconductor side parallel to the
ferromagnet/superconductor interface. The solid-line arrow stands
for the electron with spin-σ in F or electron-like quasiparticle in S,
while the dotted-line arrow for the hole with spin-σ̄ in F or hole-like
quasiparticle in S.

insulating layer located at x = 0, as shown in figure 1. If
the c-axis of the d-wave S is along a direction within plane
x = 0, which is taken to be the z-axis, such an F/d-wave
S junction may be regarded as a two-dimensional system.
The ferromagnet is described by an effective single-particle
Hamiltonian for spin-polarized electrons with exchange energy
h0, the superconductor is assumed to be d-wave pairing and
described by a BCS-like Hamiltonian, and the insulating layer
described by a δ-type potential V (x) = Uδ(x), where U
depends on the product of barrier height and width. For
simplicity, the effective masses m in both F and S are assumed
to be identical. The d-wave pair potential is a function of the
angle θS between the quasiparticle wavevector and the interface
normal, given by �(x) = �d± = �0 cos(2θS ∓ 2α) for
x > 0 when T = 0, where �d+ (�d−) stands for the pair
potential for electron-like (hole-like) quasiparticles [27], �0

is a constant, and α is the angle between the a-axis of the
crystal and the interface normal. α = π/4 for the interface
normal along the [110] orientation and α = 0 for the interface
normal along [100] orientation. �(x) = 0 in the F region for
x < 0. Notice that the effective pair potentials experienced by
the electron-like and hole-like quasiparticles in the d-wave S
are usually different, and can even have opposite signs under
certain circumstances.

We adopt the BdG equation [28] to study the F/d-wave
S junction. This approach has been widely used to describe
quasiparticle states in superconductors with spatially varying
pair potentials. In the F/S junction, the quasiparticle states
are generally expressed by wavefunctions of four components,
respectively, for electron-like quasiparticle (ELQ) and hole-
like quasiparticle (HLQ) with spin up and down. In the absence
of spin-flip scattering, the four-component BdG equations
may be decoupled into two sets of two-component equations:
one for the spin-up electron-like and spin-down hole-like
quasiparticle wavefunctions (u↑, v↓), the other for (u↓, v↑).
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The BdG equation is given by[
H0(r) − ησ h(r) �(r)

�∗(r) −H0(r) − ησ h(r)

] [
uσ (r)
vσ̄ (r)

]

= E

[
uσ (r)
vσ̄ (r)

]
. (1)

Here H0(r) = −h̄2∇2
r /2m + V (r) − EF with V (r) the usual

static potential, E is the quasiparticle energy relative to the
Fermi energy EF. h(r) = h0	(−x) with h0 the exchange
energy in F and 	(x) is the unit step function, ησ = 1 for
σ = ↑ and −1 for σ = ↓, and σ̄ stands for the spin opposite to
σ . �(r) = �(T )	(x) is the temperature-dependent energy
gap that follows the BCS relation �(T ) = �0 cos(2θS ∓
2α) tanh[1.76(Tc/T − 1)] where Tc is the critical temperature
of the d-wave S.

In the WKBJ approximation, equation (1) has special
solutions of the form

(
uσ (r)
vσ̄ (r)

)
= eik·r

(
u0

σ (r)eiqs·r
v0

σ̄ (r)e−iqs·r

)
, (2)

where u0
σ (r) and v0

σ̄ (r) obey the generalized Andreev
equations [19],[

h̄2

2m
(k + qs)

2 − ησ h0	(−x)

]
u0

σ (r)

− ih̄2(k + qs)

m
· ∇u0

σ (r) + �(r)	(x)v0
σ̄ (r)

= Eu0
σ (r), (3)

−
[

h̄2

2m
(k − qs)

2 + ησ h0	(−x)

]
v0

σ̄ (r)

+ �∗(r)	(x)u0
σ (r) + ih̄2(k − qs)

m
· ∇v0

σ̄ (r)

= Ev0
σ̄ (r). (4)

Obviously, the eigenenergy E is symmetric about h̄2qs · k/m
rather than zero. This leads to different energy gaps for
different electron directions. For simplicity, uniform IS in S
is assumed to be parallel to the interface in this work.

Suppose a beam of spin-σ ELQ incident on the interface
at x = 0 at an angle θ from F to S. There are four possible
trajectories (as shown in figure 1): normal reflection (NR)
bσ

1 at angle θ , Andreev reflection (AR) [19] aσ̄
1 as a hole

with spin-σ̄ at angle θA, and transmission cσ
1 and d σ̄

1 to S at
angle θS, respectively, as a spin-σ ELQ and a spin-σ̄ HLQ.
It is worth pointing out that the AR coefficient aσ̄

1 is labeled
with σ̄ because the AR results in an electron deficiency in the
spin-σ̄ subband of the F, even though it is at times called a
spin-σ hole. With general solutions of the BdG equation, the
wavefunctions in F and S regions can be obtained. Owing to
translational invariance in directions parallel to the interface,
the wavefunctions in the F and S are given by


F
1σ =

(
1
0

)
eiqσ

e x cos θ + aσ̄
1

(
0
1

)
eiq σ̄

h x cos θA

+ bσ
1

(
1
0

)
e−iqσ

e x cos θ , (5)

for x � 0, and


S
1σ = cσ

1

(
ud+eiφd+

vd+

)
eikd

e x cos θS

+ d σ̄
1

(
vd−eiφd−

ud−

)
e−ikd

h x cos θS, (6)

for x � 0. In equations (5),

qσ
e = kF

√
1 + [

h0 − h̄2q2
s /2m + E ′] /EF, (7a)

q σ̄
h = kF

√
1 + [−h0 − h̄2q2

s /2m − E ′] /EF, (7b)

indicating different Fermi wavevectors for the spin-σ electrons
and spin-σ̄ holes in F, with E ′ = E − h̄2kFqs sin θ/m. In
equation (6),

kd
e = kF

√
1 + [−h̄2q2

s /2m + �+
]
/EF, (8a)

kd
h = kF

√
1 − [−h̄2q2

s /2m + �−
]
/EF. (8b)

Here kF =
√

2m EF/h̄2 is the Fermi wavevector in S, ud± =√
(1 + �±/E ′)/2, vd± = √

(1 − �±/E ′)/2 with �± =√
E ′2 − �2±, and φd± = cos−1[cos(2θS∓2α)/| cos(2θS∓2α)|].

In the BTK approach [29], since the wavevector component
parallel to the interface is assumed to remain unchanged in
the reflection and transmission processes, the angles θ , θA

and θS differ from each other except when θ = 0. All the
coefficients aσ̄

1 , bσ
1 , cσ

1 and d σ̄
1 can be determined by matching

the boundary conditions at x = 0: 
F
1σ (0) = 
S

1σ (0) and
(d
S

1σ /dx)x=0 − (d
F
1σ /dx)x=0 = 2kF Z
F

1σ (0), where Z =
mU/kF is a dimensionless parameter describing the magnitude
of interfacial resistance. The Andreev and normal reflection
coefficients aσ̄

1 and bσ
1 are given below,

aσ̄
1 = 1

A
2qσ

e cos θ(ke cos θS + kh cos θS), (9)

bσ
1 = 1

A
[(qσ

e cos θ − ke cos θS − 2ikF cos θ Z)

× (kh cos θS + q σ̄
h cos θA − 2ikF cos θ Z)B+

+ (
ke cos θS − q σ̄

h cos θA + 2ikF cos θ Z
)

× (
kh cos θS + qσ

e cos θ − 2ikF cos θ Z
)

B−], (10)

here,

A = (qσ
e cos θ + ke cos θS + 2ikF cos θ Z)

× (
q σ̄

h cos θA + kh cos θS − 2ikF cos θ Z
)

B+
+ (

q σ̄
h cos θA − ke cos θS − 2ikF cos θ Z

)
× (

kd
− cos θS − qσ

e cos θ − 2ikF cos θ Z
)

B−, (11)

B± = �±eiφd±

E ′ ∓ �±
. (12)

The tunneling conductance of an normal metal (N)/s-
wave S junction has been given by the BTK theory [29],
with the contribution of AR being included. In this work
the BTK approaches readily extended to the spin-dependent
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Figure 2. Normalized conductance spectra for normal metal/d-wave
superconductor junctions for different Z = 0 (a), Z = 0.2 (b),
Z = 0.5 (c) and Z = 1.0 (d), with q ≡ qs/kF = 0.0�0 (solid line),
q = 0.2�0 (dashed line) and q = 0.35�0 (dotted line). Here the
angle between the a axis and the interface normal α = 0 (i.e. (100)
contact).

transport through an F/d-wave S junction, and the differential
conductance is given by [1, 24]

G(θ) = G↑ + G↓

= e2

π h̄
Re

∑
σ=↑,↓

Pσ

(
1 + q σ̄

h cos θA

qσ
e cos θ

∣∣aσ̄
1

∣∣2 − ∣∣bσ
1

∣∣2
)

, (13)

where Pσ = (EF +ησ h0)/2EF is the polarization for spin-σ in
the F. In the experiments, the measured conductance is given
by a weighted average over contributions from all possible
electron trajectories,

G = 1

2

∫ ∞

−∞
dE

∫ π
2

− π
2

dθG(θ) cos θ
∂ f (E − eV )

∂ E
. (14)

Here, f (E) is the Fermi distribution function.

3. Results and discussions

In what follows we discuss numerical results from equa-
tions (13) and (14) together with equations (9)–(12). Let us
first study the effect of supercurrent in the S on the conduc-
tance spectrum in the absence of exchange energy by taking
the finite temperature T = 0.6TC. Figure 2 shows the normal-
ized conductance G versus dimensionless energy E/�0, for
various Z ≡ mU/kF, and q ≡ qs/kF for N/d-wave S junc-
tions with (100) contact (i.e. α = 0, �d± = �0 cos(2θS)).
Equations (13) shows that while ordinary reflection reduces
the current, Andreev reflection increases it by giving up to
two transferred electrons (a Cooper pair) for one incident elec-
tron. So within the superconducting gap at zero temperature
the dimensionless differential conductance exhibits a central
peak at |E | = 0.0. When a uniform supercurrent IS passes
through a two-dimensional d-wave S, the phase of �(k) has a
spatial variation as e2iqs·r. This spatially varying phase leads
to an anisotropic quasiparticle excitation spectrum in a clean

Figure 3. Normalized conductance spectra for ferromagnet/d-wave
superconductor junctions with (100) contact for different Z and q
with h0/EF = 0.7. The other parameters are the same as in figure 2.

S besides the intrinsic anisotropic property. For Z = 0.0,
as shown in figure 2(a), the central peak due to Andreev re-
flection is gradually suppressed and broadened by increasing
q . With increasing barrier strength Z , Andreev reflection is
greatly suppressed, so conductance within the energy gap di-
minishes rapidly and there are two sharp peaks in the conduc-
tance spectrum at |E | ≈ �0, called coherence peaks. From
figure 2(d), it is clear that barrier strengths Z ∼ 1.0 give re-
sults essentially indistinguishable from those for classical tun-
nel junctions where G exhibits a central dip. When q �= 0,
the eigenenergy E is symmetric about h̄2qs · k/m rather than
zero. The energy corresponding to the coherence peaks is de-
termined by |E | − h̄2qs · k/m ≈ �0. As q increases, the
coherence peaks are broadened, and the peaks move outward
while the gap diminishes, again because of the gap anisotropy
caused by the supercurrent. Interestingly, one sees an intri-
cate behavior with some similarity to the corresponding cases
in metal/s-wave S junctions [30], where a three peaks struc-
ture including a peak at zero energy at nearly critical IS and
Z ≈ 0.5 appears in the conductance, indicating the onset of
current-induced removal of the gap on the Fermi surface where
a gap originally exists [23]. The central peak disappears at
Z � 0.5 because the Andreev reflection which induces this
peak is hypersensitive to Z . The remaining effect of current-
induced gap anisotropy and the eventual disappearance of the
gap are largely obscured by the d-wave anisotropy.

For F/d-wave S junctions with (100) contact, by taking
the same parameters as figure 2, the calculated results for
exchange energy h0/EF = 0.7 are shown in figure 3. In
addition to the same results as figure 2, where the transverse
supercurrent will also slightly lowers the coherence peaks and
a three peaks structure appears, some other interesting results
are found. Comparing figures 3(d) and 2(d), one can find that
with increasing q , the superconducting gap diminishes and this
effect is suppressed by exchange energy.

The normalized conductance for (110) contact (α = π/4,
�d± = cos(2θS ∓ 2α) = ±sin(2θS)) is shown in figures 4
and 5, corresponding to the normal metal and ferromagnet
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Figure 4. Normalized conductance spectra for normal metal/d-wave
superconductor junctions for different Z = 0.0 (a), Z = 0.2 (b),
Z = 0.5 (c) and Z = 1.0 (d), with q ≡ qs/kF = 0.0�0 (solid line),
q = 0.2�0 (dashed line) and q = 0.39�0 (dotted line). Here the
angle between the a axis and the interface normal α = π/4
(i.e. (110) contact).

Figure 5. Normalized conductance spectra for ferromagnet/d-wave
superconductor junctions with (110) contact for different Z and q
with h0/EF = 0.3. The other parameters are the same as in figure 4.

junctions, respectively. In the absence of exchange energy [23],
as shown in figure 4, besides the similar behavior to the
corresponding cases in figure 2, three interesting features are
found. First, for Z = 0.5 and 1.0 (as shown in figures 4(c)
and (d)), the coherence peak is split into two subpeaks due to
the presence of the transverse supercurrent in S, and the peak
splitting increases as the supercurrent q increases. This may
be understood by the following argument. For the case of a
finite transverse supercurrent, there is an energy splitting E ′
in the energy between the spin-up and spin-down Bogoliubov
fermions and that consequently leads to the splitting of the
conductance peaks. The energy difference between the two
subpeaks in the conductance spectrum is derived from the
integral over θ of 2E ′, so with increasing q , the distance
of the two subpeaks increase. Second, unlike metal/d-wave
superconductor junctions with (100) contact for Z = 0.5 and

Figure 6. Normalized conductance spectra for ferromagnet/d-wave
superconductor junctions for different Z = 0.5 (a), (b), (c), Z = 1.0
(d), (e), (f), with q = 0.0�0 (a), (d), q = 0.2�0 (b), (e) and
q = 0.39�0 (c), (f), for various h0/EF = 0.0 (solid line), 0.3
(dashed line), 0.5 (dotted line), 0.7 (dash–dotted line) and 0.9
(dash–dot–dotted line).

critical q , zero-energy peak structures do not appear. Third, in
the tunneling limit (Z � 0.5), with increasing q the zero-bias
conductance peaks (ZBCPs) disappear and the conductance
spectra show a zero-bias conductance dip (ZBCD) structure.

Figure 5 shows the normalized conductance for (110)
contact in the presence of exchange energy, here h0/EF = 0.3,
by taking the other parameters the same as in figure 4. For
Z = 0.5, Z = 1.0 and q �= 0, (as shown in figures 5(c)
and (d)), the very interesting result is that the subpeak is split
into two peaks, again due to the exchange energy together with
the transverse supercurrent. Moreover, we find that a zero-
energy peak structure appears at certain values of h0/EF, as
explained below.

Figure 6 gives the calculation results of the normalized
conductance for different exchange energy h0/EF by taking
different Z and q with α = π/4. It is shown that the coherence
peak splits into two subpeaks when q �= 0.0 with Z = 0.5
and 1.0 (as shown in figures 6(b), (c), (e) and (f)). The
splitting energy is fixed for fixed q , and it is increased with
increasing q . When the exchange energy h0/EF �= 0.0 and the
supercurrent q �= 0.0, the subpeak splits into two peaks again
(here it is called the Zeeman-like splitting). The Zeeman-like
splitting energy is derived from the exchange energy together
with the transverse supercurrent, and it is apparent that for
fixed q that,the larger the exchange energy, the larger the
energy difference between the two Zeeman-like splitting peaks
in the conductance spectrum is. It is easy to understand that
the exchange energy plays a dominant role in the Zeeman-
like splitting, similar to in Zeeman splitting. Increasing the
exchange energy from h0/EF = 0.0 to 0.9, the distance
between the two peaks around E = 0.0 is decreased. At
a certain value of h0/EF, these two peaks could merge into

5
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a single one at zero energy (as shown in figure 6(c), when
h0/EF = 0.7, a zero-energy peak appears in the conductance
spectrum where a zero-energy dip originally appears), then the
system become gapless.

4. Summary

In summary, we have studied the tunneling spectroscopy of
a ferromagnet/d-wave superconductor carrying a transverse
supercurrent IS for (100) and (110) contact using the BdG
equation. It is found that a uniform supercurrent IS could
lead to an anisotropic quasiparticle excitation spectrum in
a clean S. For α = 0, we observe a three-peak structure
(one peak locates at zero energy) at nearly critical IS and
Z ≈ 0.5 for both normal metal/superconductor (N/S)
and ferromagnet/superconductor (F/S) junctions, signaling the
onset of current-induced removal of the gap on the Fermi
surface where a gap originally exists. For (110) contact,
in the absence of exchange energy for the tunneling limit
(i.e., Z = 0.5 and 1.0), one coherence peak splits into two
subpeaks due to the presence of the transverse supercurrent
in S, and the corresponding energy splitting increases as the
supercurrent increases. For F/S junctions with (110) contact,
when q �= 0.0 with Z = 0.5 and 1.0, these subpeaks
split again, namely, Zeeman-like splitting. The Zeeman-like
splitting energy is dependent on both exchange energy and
transverse supercurrent, while we find the exchange energy
play a dominant role. Moreover, at certain values of h0/EF,
we find that the two Zeeman-like peaks around zero energy
could merge into single one.
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